1,488 research outputs found

    Association of Resistance Exercise, Independent of and Combined With Aerobic Exercise, With the Incidence of Metabolic Syndrome.

    Get PDF
    OBJECTIVE: To determine the association of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of metabolic syndrome (MetS). PATIENTS AND METHODS: The study cohort included adults (mean ± SD age, 46±9.5 years) who received comprehensive medical examinations at the Cooper Clinic in Dallas, Texas, between January 1, 1987, and December, 31, 2006. Exercise was assessed by self-reported frequency and minutes per week of resistance and aerobic exercise and meeting the US Physical Activity Guidelines (resistance exercise ≥2 d/wk; aerobic exercise ≥500 metabolic equivalent min/wk) at baseline. The incidence of MetS was based on the National Cholesterol Education Program Adult Treatment Panel III criteria. We used Cox regression to generate hazard ratios (HRs) and 95% CIs. RESULTS: Among 7418 participants, 1147 (15%) had development of MetS during a median follow-up of 4 years (maximum, 19 years; minimum, 0.1 year). Meeting the resistance exercise guidelines was associated with a 17% lower risk of MetS (HR, 0.83; 95% CI, 0.73-0.96; P=.009) after adjusting for potential confounders and aerobic exercise. Further, less than 1 hour of weekly resistance exercise was associated with 29% lower risk of development of MetS (HR, 0.71; 95% CI, 0.56-0.89; P=.003) compared with no resistance exercise. However, larger amounts of resistance exercise did not provide further benefits. Individuals meeting both recommended resistance and aerobic exercise guidelines had a 25% lower risk of development of MetS (HR, 0.75; 95% CI, 0.63-0.89; P<.001) compared with meeting neither guideline. CONCLUSION: Participating in resistance exercise, even less than 1 hour per week, was associated with a lower risk of development of MetS, independent of aerobic exercise. Health professionals should recommend that patients perform resistance exercise along with aerobic exercise to reduce MetS

    Comparison of spontaneous versus paced breathing on heart rate variability at high altitude

    Get PDF
    © 2018, Journal of Clinical and Diagnostic Research. All rights reserved. Introduction: There is conflicting data at sea-level to suggest that Paced Breathing (PB) versus Spontaneous Breathing (SB) during short-term Heart Rate Variability (HRV) measurement improves data reliability. Aim: This study sought to examine the effects of SB versus PB on HRV, at High Altitude (HA). Materials and Methods: This was a prospective observational study on thirty healthy adult men who were investigated over nine days at altitudes of 800-4107 m. Cardiac inter-beat interval data were measured over 55 seconds, twice daily, using an ithlete finger sensor linked to a mobile phone to generate a HRV score. Agreements in the paired (SB vs PB) HRV scores were examined using paired t-tests, correlation coefficients and F-Testing. A factorial repeated measures ANOVA was used to examine the main effect of altitude and breathing method on the paired differences in HRV scores. Results: HA led to a significant reduction in SpO2 and increase in Acute Mountain Sickness (AMS) Scores. HRV scores (511 paired scores) were consistently higher with PB versus SB (mean difference +6.0; 96.1% within 95% agreement limit), though the variance was lower (F=1.2; p=0.04) and the scores strongly correlated (r=0.78; p<0.0001). HRV scores were lower with AMS (versus without AMS), but this difference was only significant with SB (68.1±12.1 vs. 74.3±11.4 vs; p=0.03) but not PB (76.3±11.8 vs. 80.3±10.4 vs; p=0.13). There was a significant main-effect for altitude (F=5.3; p<0.0001) and breathing (F=262.1; p<0.0001) on HRV scores but no altitude-x-breathing interaction (F=1.2; p=0.30). Conclusion: Ithlete HRV scores obtained with PB and SB strongly correlate at moderate HA but are consistently higher and the variance lower with PB. Whilst the actual per se does not affect this difference, the presence of AMS may be an important confounder

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app

    Get PDF
    Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the COVID-19 Symptom Study app, we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of ’urban hotspots’. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors

    Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app

    Get PDF
    Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the COVID-19 Symptom Study app, we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of ’urban hotspots’. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors

    Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study

    Get PDF
    AIMS/HYPOTHESIS: Vasopressin plays a role in osmoregulation, glucose homeostasis and inflammation. Therefore, plasma copeptin, the stable C-terminal portion of the precursor of vasopressin, has strong potential as a biomarker for the cardiometabolic syndrome and diabetes. Previous results were contradictory, which may be explained by differences between men and women in responsiveness of the vasopressin system. The aim of this study was to evaluate the usefulness of copeptin for prediction of future type 2 diabetes in men and women separately. METHODS: From the Prevention of Renal and Vascular Endstage Disease (PREVEND) study, 4,063 women and 3,909 men without diabetes at baseline were included. A total of 208 women and 288 men developed diabetes during a median follow-up of 7.7 years. RESULTS: In multivariable-adjusted models, we observed a stronger association of copeptin with risk of future diabetes in women (OR 1.49 [95% CI 1.24, 1.79]) than in men (OR 1.01 [95% CI 0.85, 1.19]) (p (interaction) < 0.01). The addition of copeptin to the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) clinical model improved the discriminative value (C-statistic,+0.007, p = 0.02) and reclassification (integrated discrimination improvement [IDI] = 0.004, p < 0.01) in women. However, we observed no improvement in men. The additive value of copeptin in women was maintained when other independent predictors, such as glucose, high sensitivity C-reactive protein (hs-CRP) and 24 h urinary albumin excretion (UAE), were included in the model. CONCLUSIONS/INTERPRETATION: The association of plasma copeptin with the risk of developing diabetes was stronger in women than in men. Plasma copeptin alone, and along with existing biomarkers (glucose, hs-CRP and UAE), significantly improved the risk prediction for diabetes in women

    Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets

    Get PDF
    BACKGROUND: Targeting persistent tubercule bacilli has become an important challenge in the development of anti-tuberculous drugs. As the glyoxylate bypass is essential for persistent bacilli, interference with it holds the potential for designing new antibacterial drugs. We have developed kinetic models of the tricarboxylic acid cycle and glyoxylate bypass in Escherichia coli and Mycobacterium tuberculosis, and studied the effects of inhibition of various enzymes in the M. tuberculosis model. RESULTS: We used E. coli to validate the pathway-modeling protocol and showed that changes in metabolic flux can be estimated from gene expression data. The M. tuberculosis model reproduced the observation that deletion of one of the two isocitrate lyase genes has little effect on bacterial growth in macrophages, but deletion of both genes leads to the elimination of the bacilli from the lungs. It also substantiated the inhibition of isocitrate lyases by 3-nitropropionate. On the basis of our simulation studies, we propose that: (i) fractional inactivation of both isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 is required for a flux through the glyoxylate bypass in persistent mycobacteria; and (ii) increasing the amount of active isocitrate dehydrogenases can stop the flux through the glyoxylate bypass, so the kinase that inactivates isocitrate dehydrogenase 1 and/or the proposed inactivator of isocitrate dehydrogenase 2 is a potential target for drugs against persistent mycobacteria. In addition, competitive inhibition of isocitrate lyases along with a reduction in the inactivation of isocitrate dehydrogenases appears to be a feasible strategy for targeting persistent mycobacteria. CONCLUSION: We used kinetic modeling of biochemical pathways to assess various potential anti-tuberculous drug targets that interfere with the glyoxylate bypass flux, and indicated the type of inhibition needed to eliminate the pathogen. The advantage of such an approach to the assessment of drug targets is that it facilitates the study of systemic effect(s) of the modulation of the target enzyme(s) in the cellular environment

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    The Redox State of Transglutaminase 2 Controls Arterial Remodeling

    Get PDF
    While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall
    corecore